As a general rule, increasing mass will improve sound insulation. Brick and concrete walls have stronger sound insulating values because they are of greater mass when compared to glass. But because we need glass to see through, to provide natural daylight and to enhance a buildings look and appeal, the need for greater sound control when using glass becomes more important.
Sound reduction will improve with increased glass thickness due to the greater mass involved;

Sound reduction will decrease somewhat with increasingly larger glass areas but not enough to make much difference in the majority of architectural glass sizes;

Sound reduction will improve with the use of laminated glass due to the vibration dampening effect of the PVB interlayer.

Sound reduction will improve with the use of glass/ airspace combinations, but the performance is critically dependent upon the width of the airspace. An airspace of 100mm is generally regarded as a minimum for reasonable benefits at medium to high frequencies. The optimum airspace is about 300mm.
The RW Ratings refer to the measure of sound reduction through a wall or other building element. Since the sound reduction may be different at different frequencies, test measurements are subjected to a standard procedure which yields a single number that is about equal to the average sound reduction in the middle of the human hearing range.